Polyurethane ( ;[1] often abbreviated PUR and PU) is a class of polymers composed of organic units joined by carbamate (urethane) links. In contrast to other common polymers such as polyethylene and polystyrene, polyurethane term does not refer to the single type of polymer but a group of polymers. Unlike polyethylene and polystyrene, polyurethanes can be produced from a wide range of starting materials resulting in various polymers within the same group. This chemical variety produces polyurethanes with different chemical structures leading to many different applications. These include rigid and flexible foams, and coatings, adhesives, electrical potting compounds, and fibers such as spandex and polyurethane laminate (PUL). Foams are the largest application accounting for 67% of all polyurethane produced in .[2]
A polyurethane is typically produced by reacting a polymeric isocyanate with a polyol.[3] Since a polyurethane contains two types of monomers, which polymerize one after the other, they are classed as alternating copolymers. Both the isocyanates and polyols used to make a polyurethane contain two or more functional groups per molecule.
Global production in was 25 million metric tonnes,[4] accounting for about 6% of all polymers produced in that year.
Otto Bayer and his coworkers at IG Farben in Leverkusen, Germany, first made polyurethanes in .[5][6] The new polymers had some advantages over existing plastics that were made by polymerizing olefins or by polycondensation, and were not covered by patents obtained by Wallace Carothers on polyesters.[7] Early work focused on the production of fibers and flexible foams and PUs were applied on a limited scale as aircraft coating during World War II.[7] Polyisocyanates became commercially available in , and production of flexible polyurethane foam began in by combining toluene diisocyanate (TDI) and polyester polyols. These materials were also used to produce rigid foams, gum rubber, and elastomers. Linear fibers were produced from hexamethylene diisocyanate (HDI) and 1,4-Butanediol (BDO).
DuPont introduced polyethers, specifically poly(tetramethylene ether) glycol, in . BASF and Dow Chemical introduced polyalkylene glycols in . Polyether polyols were cheaper, easier to handle and more water-resistant than polyester polyols. Union Carbide and Mobay, a U.S. Monsanto/Bayer joint venture, also began making polyurethane chemicals.[7] In more than 45,000 metric tons of flexible polyurethane foams were produced. The availability of chlorofluoroalkane blowing agents, inexpensive polyether polyols, and methylene diphenyl diisocyanate (MDI) allowed polyurethane rigid foams to be used as high-performance insulation materials. In , urethane-modified polyisocyanurate rigid foams were introduced, offering even better thermal stability and flammability resistance. During the s, automotive interior safety components, such as instrument and door panels, were produced by back-filling thermoplastic skins with semi-rigid foam.
In , Bayer exhibited an all-plastic car in Düsseldorf, Germany. Parts of this car, such as the fascia and body panels, were manufactured using a new process called reaction injection molding (RIM), in which the reactants were mixed and then injected into a mold. The addition of fillers, such as milled glass, mica, and processed mineral fibers, gave rise to reinforced RIM (RRIM), which provided improvements in flexural modulus (stiffness), reduction in coefficient of thermal expansion and better thermal stability. This technology was used to make the first plastic-body automobile in the United States, the Pontiac Fiero, in . Further increases in stiffness were obtained by incorporating pre-placed glass mats into the RIM mold cavity, also known broadly as resin injection molding, or structural RIM.
Starting in the early s, water-blown microcellular flexible foams were used to mold gaskets for automotive panels and air-filter seals, replacing PVC polymers. Polyurethane foams are used in many automotive applications including seating, head and arm rests, and headliners.
Polyurethane foam (including foam rubber) is sometimes made using small amounts of blowing agents to give less dense foam, better cushioning/energy absorption or thermal insulation. In the early s, because of their impact on ozone depletion, the Montreal Protocol restricted the use of many chlorine-containing blowing agents, such as trichlorofluoromethane (CFC-11). By the late s, blowing agents such as carbon dioxide, pentane, 1,1,1,2-tetrafluoroethane (HFC-134a) and 1,1,1,3,3-pentafluoropropane (HFC-245fa) were widely used in North America and the EU, although chlorinated blowing agents remained in use in many developing countries. Later, HFC-134a was also banned due to high ODP and GWP readings, and HFC-141B was introduced in early s as an alternate blowing agent in developing nations.[8]
Polyurethanes are produced by reacting diisocyanates with polyols,[9][10][11][12][13][14] often in the presence of a catalyst, or upon exposure to ultraviolet radiation.[15] Common catalysts include tertiary amines, such as DABCO, DMDEE, or metallic soaps, such as dibutyltin dilaurate. The stoichiometry of the starting materials must be carefully controlled as excess isocyanate can trimerise, leading to the formation of rigid polyisocyanurates. The polymer usually has a highly crosslinked molecular structure, resulting in a thermosetting material which does not melt on heating; although some thermoplastic polyurethanes are also produced.
The most common application of polyurethane is as solid foams, which requires the presence of a gas, or blowing agent, during the polymerization step. This is commonly achieved by adding small amounts of water, which reacts with isocyanates to form CO2 gas and an amine, via an unstable carbamic acid group. The amine produced can also react with isocyanates to form urea groups, and as such the polymer will contain both these and urethane linkers. The urea is not very soluble in the reaction mixture and tends to form separate "hard segment" phases consisting mostly of polyurea. The concentration and organization of these polyurea phases can have a significant impact on the properties of the foam.[16]
The type of foam produced can be controlled by regulating the amount of blowing agent and also by the addition of various surfactants which change the rheology of the polymerising mixture. Foams can be either "closed-cell", where most of the original bubbles or cells remain intact, or "open-cell", where the bubbles have broken but the edges of the bubbles are stiff enough to retain their shape, in extreme cases reticulated foams can be formed. Open-cell foams feel soft and allow air to flow through, so they are comfortable when used in seat cushions or mattresses. Closed-cell foams are used as rigid thermal insulation. High-density microcellular foams can be formed without the addition of blowing agents by mechanically frothing the polyol prior to use. These are tough elastomeric materials used in covering car steering wheels or shoe soles.
The properties of a polyurethane are greatly influenced by the types of isocyanates and polyols used to make it. Long, flexible segments, contributed by the polyol, give soft, elastic polymer. High amounts of crosslinking give tough or rigid polymers. Long chains and low crosslinking give a polymer that is very stretchy, short chains with many crosslinks produce a hard polymer while long chains and intermediate crosslinking give a polymer useful for making foam. The choices available for the isocyanates and polyols, in addition to other additives and processing conditions allow polyurethanes to have the very wide range of properties that make them such widely used polymers.
The main ingredients to make a polyurethane are di- and tri-isocyanates and polyols. Other materials are added to aid processing the polymer or to modify the properties of the polymer. PU foam formulation sometimes have water added too.
Isocyanates used to make polyurethane have two or more isocyanate groups on each molecule. The most commonly used isocyanates are the aromatic diisocyanates, toluene diisocyanate (TDI) and methylene diphenyl diisocyanate, (MDI). These aromatic isocyanates are more reactive than aliphatic isocyanates.
TDI and MDI are generally less expensive and more reactive than other isocyanates. Industrial grade TDI and MDI are mixtures of isomers and MDI often contains polymeric materials. They are used to make flexible foam (for example slabstock foam for mattresses or molded foams for car seats),[17] rigid foam (for example insulating foam in refrigerators) elastomers (shoe soles, for example), and so on. The isocyanates may be modified by partially reacting them with polyols or introducing some other materials to reduce volatility (and hence toxicity) of the isocyanates, decrease their freezing points to make handling easier or to improve the properties of the final polymers.
Aliphatic and cycloaliphatic isocyanates are used in smaller quantities, most often in coatings and other applications where color and transparency are important since polyurethanes made with aromatic isocyanates tend to darken on exposure to light.[page needed][18] The most important aliphatic and cycloaliphatic isocyanates are 1,6-hexamethylene diisocyanate (HDI), 1-isocyanato-3-isocyanatomethyl-3,5,5-trimethyl-cyclohexane (isophorone diisocyanate, IPDI), and 4,4′-diisocyanato dicyclohexylmethane (H12MDI or hydrogenated MDI). Other more specialized isocyanates include Tetramethylxylylene diisocyanate (TMXDI).
Polyols are polymers in their own right and have on average two or more hydroxyl groups per molecule. They can be converted to polyether polyols by co-polymerizing ethylene oxide and propylene oxide with a suitable polyol precursor.[19] Polyester polyols are made by the polycondensation of multifunctional carboxylic acids and polyhydroxyl compounds. They can be further classified according to their end use. Higher molecular weight polyols (molecular weights from 2,000 to 10,000) are used to make more flexible polyurethanes while lower molecular weight polyols make more rigid products.
Polyols for flexible applications use low functionality initiators such as dipropylene glycol (f = 2), glycerine (f = 3), or a sorbitol/water solution (f = 2.75).[20] Polyols for rigid applications use higher functionality initiators such as sucrose (f = 8), sorbitol (f = 6), toluenediamine (f = 4), and Mannich bases (f = 4). Propylene oxide and/or ethylene oxide is added to the initiators until the desired molecular weight is achieved. The order of addition and the amounts of each oxide affect many polyol properties, such as compatibility, water-solubility, and reactivity. Polyols made with only propylene oxide are terminated with secondary hydroxyl groups and are less reactive than polyols capped with ethylene oxide, which contain primary hydroxyl groups. Incorporating carbon dioxide into the polyol structure is being researched by multiple companies.
Graft polyols (also called filled polyols or polymer polyols) contain finely dispersed styrene–acrylonitrile, acrylonitrile, or polyurea (PHD) polymer solids chemically grafted to a high molecular weight polyether backbone. They are used to increase the load-bearing properties of low-density high-resiliency (HR) foam, as well as add toughness to microcellular foams and cast elastomers. Initiators such as ethylenediamine and triethanolamine are used to make low molecular weight rigid foam polyols that have built-in catalytic activity due to the presence of nitrogen atoms in the backbone. A special class of polyether polyols, poly(tetramethylene ether) glycols, which are made by polymerizing tetrahydrofuran, are used in high performance coating, wetting and elastomer applications.
Conventional polyester polyols are based on virgin raw materials and are manufactured by the direct polyesterification of high-purity diacids and glycols, such as adipic acid and 1,4-butanediol. Polyester polyols are usually more expensive and more viscous than polyether polyols, but they make polyurethanes with better solvent, abrasion, and cut resistance. Other polyester polyols are based on reclaimed raw materials. They are manufactured by transesterification (glycolysis) of recycled poly(ethyleneterephthalate) (PET) or dimethylterephthalate (DMT) distillation bottoms with glycols such as diethylene glycol. These low molecular weight, aromatic polyester polyols are used in rigid foam, and bring low cost and excellent flammability characteristics to polyisocyanurate (PIR) boardstock and polyurethane spray foam insulation.
Specialty polyols include polycarbonate polyols, polycaprolactone polyols, polybutadiene polyols, and polysulfide polyols. The materials are used in elastomer, sealant, and adhesive applications that require superior weatherability, and resistance to chemical and environmental attack. Natural oil polyols derived from castor oil and other vegetable oils are used to make elastomers, flexible bunstock, and flexible molded foam.
Co-polymerizing chlorotrifluoroethylene or tetrafluoroethylene with vinyl ethers containing hydroxyalkyl vinyl ether produces fluorinated (FEVE) polyols. Two-component fluorinated polyurethanes prepared by reacting FEVE fluorinated polyols with polyisocyanate have been used to make ambient cure paints and coatings. Since fluorinated polyurethanes contain a high percentage of fluorine–carbon bonds, which are the strongest bonds among all chemical bonds, fluorinated polyurethanes exhibit resistance to UV, acids, alkali, salts, chemicals, solvents, weathering, corrosion, fungi and microbial attack. These have been used for high performance coatings and paints.[21]
Phosphorus-containing polyols are available that become chemically bonded to the polyurethane matrix for the use as flame retardants. This covalent linkage prevents migration and leaching of the organophosphorus compound.
Interest in sustainable "green" products raised interest in polyols derived from vegetable oils,[22][23][24] fatty acids,[25] lignin, sorbitol,[26] etc. These are mostly contributing to polyol part. There are attempts made to prepare isocyanate part using bio-derived material. However, as far as commercialization is concern, polyol part is more targeted being easy and required in more quantity than isocyanate part. Various oils used in the preparation polyols for polyurethanes include soybean oil, cottonseed oil, neem seed oil, algae oil,[27][28] and castor oil. Vegetable oils are functionalized in various ways and modified to polyetheramides, polyethers, alkyds, etc. Renewable sources used to prepare polyols may be fatty acids or dimer fatty acids.[29] Some biobased and isocyanate-free polyurethanes exploit the reaction between polyamines and cyclic carbonates to produce polyhydroxyurethanes.[30]
Chain extenders (f = 2) and cross linkers (f ≥ 3) are low molecular weight hydroxyl and amine terminated compounds that play an important role in the polymer morphology of polyurethane fibers, elastomers, adhesives, and certain integral skin and microcellular foams.
The elastomeric properties of these materials are derived from the phase separation of the hard and soft copolymer segments of the polymer, such that the urethane hard segment domains serve as cross-links between the amorphous polyether (or polyester) soft segment domains. This phase separation occurs because the mainly nonpolar, low melting soft segments are incompatible with the polar, high melting hard segments. The soft segments, which are formed from high molecular weight polyols, are mobile and are normally present in coiled formation, while the hard segments, which are formed from the isocyanate and chain extenders, are stiff and immobile. As the hard segments are covalently coupled to the soft segments, they inhibit plastic flow of the polymer chains, thus creating elastomeric resiliency. Upon mechanical deformation, a portion of the soft segments are stressed by uncoiling, and the hard segments become aligned in the stress direction. This reorientation of the hard segments and consequent powerful hydrogen bonding contributes to high tensile strength, elongation, and tear resistance values.[12][31][32][33][34] The choice of chain extender also determines flexural, heat, and chemical resistance properties.
The most important chain extenders are ethylene glycol, 1,4-butanediol (1,4-BDO or BDO), 1,6-hexanediol, cyclohexane dimethanol and hydroquinone bis(2-hydroxyethyl) ether (HQEE). All of these glycols form polyurethanes that phase separate well and form well defined hard segment domains, and are melt processable. They are all suitable for thermoplastic polyurethanes with the exception of ethylene glycol, since its derived bis-phenyl urethane undergoes unfavorable degradation at high hard segment levels.[10] Diethanolamine and triethanolamine are used in flex molded foams to build firmness and add catalytic activity. Diethyltoluenediamine is used extensively in RIM, and in polyurethane and polyurea elastomer formulations.
Table of chain extenders and cross linkers[35] Compound type Molecule Mol.Polyurethane catalysts can be classified into two broad categories, basic and acidic amine. Tertiary amine catalysts function by enhancing the nucleophilicity of the diol component. Alkyl tin carboxylates, oxides and mercaptides oxides function as mild Lewis acids in accelerating the formation of polyurethane. As bases, traditional amine catalysts include triethylenediamine (TEDA, also called DABCO, 1,4-diazabicyclo[2.2.2]octane), dimethylcyclohexylamine (DMCHA), dimethylethanolamine (DMEA), Dimethylaminoethoxyethanol and bis-(2-dimethylaminoethyl)ether, a blowing catalyst also called A-99. A typical Lewis acidic catalyst is dibutyltin dilaurate. The process is highly sensitive to the nature of the catalyst and is also known to be autocatalytic.[36]
Another class of catalysts was published in a study in May . In this study, polyurethane synthesis was investigated in the presence of acid catalysts, namely dimethylphosphite (DMHP), methanesulfonic acid (MSA), and trifluoromethanesulfonic acid (TFMSA). The thermodynamic profile was examined and described in detail through computational tools, showing that TFMSA had the best catalytic properties. The study aimed to open the door to a new class of catalysts.[37]
Factors affecting catalyst selection include balancing three reactions: urethane (polyol+isocyanate, or gel) formation, the urea (water+isocyanate, or "blow") formation, or the isocyanate trimerization reaction (e.g., using potassium acetate, to form isocyanurate rings). A variety of specialized catalysts have been developed.[38][39][40]
Surfactants are used to modify the characteristics of both foam and non-foam polyurethane polymers. They take the form of polydimethylsiloxane-polyoxyalkylene block copolymers, silicone oils, nonylphenol ethoxylates, and other organic compounds. In foams, they are used to emulsify the liquid components, regulate cell size, and stabilize the cell structure to prevent collapse and sub-surface voids.[41] In non-foam applications they are used as air release and antifoaming agents, as wetting agents, and are used to eliminate surface defects such as pin holes, orange peel, and sink marks.
Polyurethanes are produced by mixing two or more liquid streams. The polyol stream contains catalysts, surfactants, blowing agents (when making polyurethane foam insulation) and so on. The two components are referred to as a polyurethane system, or simply a system. The isocyanate is commonly referred to in North America as the 'A-side' or just the 'iso'. The blend of polyols and other additives is commonly referred to as the 'B-side' or as the 'poly'.[citation needed] This mixture might also be called a 'resin' or 'resin blend'. In Europe the meanings for 'A-side' and 'B-side' are reversed.[citation needed] Resin blend additives may include chain extenders, cross linkers, surfactants, flame retardants, blowing agents, pigments, and fillers. Polyurethane can be made in a variety of densities and hardnesses by varying the isocyanate, polyol or additives.
Fully reacted polyurethane polymer is chemically inert.[42] No exposure limits have been established in the U.S. by OSHA (Occupational Safety and Health Administration) or ACGIH (American Conference of Governmental Industrial Hygienists). It is not regulated by OSHA for carcinogenicity.
Polyurethanes are combustible.[43] Decomposition from fire can produce significant amounts of carbon monoxide and hydrogen cyanide, in addition to nitrogen oxides, isocyanates, and other toxic products.[44] Due to the flammability of the material, it has to be treated with flame retardants (at least in case of furniture), almost all of which are considered harmful.[45][46] California later issued Technical Bulletin 117 which allowed most polyurethane foam to pass flammability tests without the use of flame retardants. Green Science Policy Institute states: "Although the new standard can be met without flame retardants, it does NOT ban their use. Consumers who wish to reduce household exposure to flame retardants can look for a TB117- tag on furniture, and verify with retailers that products do not contain flame retardants."[47]
Liquid resin blends and isocyanates may contain hazardous or regulated components. Isocyanates are known skin and respiratory sensitizers. Additionally, amines, glycols, and phosphate present in spray polyurethane foams present risks.[48]
Exposure to chemicals that may be emitted during or after application of polyurethane spray foam (such as isocyanates) are harmful to human health and therefore special precautions are required during and after this process.[49]
In the United States, additional health and safety information can be found through organizations such as the Polyurethane Manufacturers Association (PMA) and the Center for the Polyurethanes Industry (CPI), as well as from polyurethane system and raw material manufacturers. Regulatory information can be found in the Code of Federal Regulations Title 21 (Food and Drugs) and Title 40 (Protection of the Environment). In Europe, health and safety information is available from ISOPA,[50] the European Diisocyanate and Polyol Producers Association.
The methods of manufacturing polyurethane finished goods range from small, hand pour piece-part operations to large, high-volume bunstock and boardstock production lines. Regardless of the end-product, the manufacturing principle is the same: to meter the liquid isocyanate and resin blend at a specified stoichiometric ratio, mix them together until a homogeneous blend is obtained, dispense the reacting liquid into a mold or on to a surface, wait until it cures, then demold the finished part.
Although the capital outlay can be high, it is desirable to use a meter-mix or dispense unit for even low-volume production operations that require a steady output of finished parts. Dispense equipment consists of material holding (day) tanks, metering pumps, a mix head, and a control unit. Often, a conditioning or heater–chiller unit is added to control material temperature in order to improve mix efficiency, cure rate, and to reduce process variability. Choice of dispense equipment components depends on shot size, throughput, material characteristics such as viscosity and filler content, and process control. Material day tanks may be single to hundreds of gallons in size and may be supplied directly from drums, IBCs (intermediate bulk containers, such as caged IBC totes), or bulk storage tanks. They may incorporate level sensors, conditioning jackets, and mixers. Pumps can be sized to meter in single grams per second up to hundreds of pounds per minute. They can be rotary, gear, or piston pumps, or can be specially hardened lance pumps to meter liquids containing highly abrasive fillers such as chopped or hammer-milled glass fiber and wollastonite.[citation needed]
The pumps can drive low-pressure (10 to 30 bar, 1 to 3 MPa) or high-pressure (125 to 250 bar, 12.5 to 25.0 MPa) dispense systems. Mix heads can be simple static mix tubes, rotary-element mixers, low-pressure dynamic mixers, or high-pressure hydraulically actuated direct impingement mixers. Control units may have basic on/off and dispense/stop switches, and analogue pressure and temperature gauges, or may be computer-controlled with flow meters to electronically calibrate mix ratio, digital temperature and level sensors, and a full suite of statistical process control software. Add-ons to dispense equipment include nucleation or gas injection units, and third or fourth stream capability for adding pigments or metering in supplemental additive packages.
Distinct from pour-in-place, bun and boardstock, and coating applications, the production of piece parts requires tooling to contain and form the reacting liquid. The choice of mold-making material is dependent on the expected number of uses to end-of-life (EOL), molding pressure, flexibility, and heat transfer characteristics.
RTV silicone is used for tooling that has an EOL in the thousands of parts. It is typically used for molding rigid foam parts, where the ability to stretch and peel the mold around undercuts is needed. The heat transfer characteristic of RTV silicone tooling is poor. High-performance, flexible polyurethane elastomers are also used in this way.
Epoxy, metal-filled epoxy, and metal-coated epoxy is used for tooling that has an EOL in the tens of thousands of parts. It is typically used for molding flexible foam cushions and seating, integral skin and microcellular foam padding, and shallow-draft RIM bezels and fascia. The heat transfer characteristic of epoxy tooling is fair; the heat transfer characteristic of metal-filled and metal-coated epoxy is good. Copper tubing can be incorporated into the body of the tool, allowing hot water to circulate and heat the mold surface.
Aluminum is used for tooling that has an EOL in the hundreds of thousands of parts. It is typically used for molding microcellular foam gasketing and cast elastomer parts, and is milled or extruded into shape.
Mirror-finish stainless steel is used for tooling that imparts a glossy appearance to the finished part. The heat transfer characteristic of metal tooling is excellent.
Finally, molded or milled polypropylene is used to create low-volume tooling for molded gasket applications. Instead of many expensive metal molds, low-cost plastic tooling can be formed from a single metal master, which also allows greater design flexibility. The heat transfer characteristic of polypropylene tooling is poor, which must be taken into consideration during the formulation process.
In , the global consumption of polyurethane raw materials was above 12 million metric tons, and the average annual growth rate was about 5%.[51] Revenues generated with PUR on the global market are expected to rise to approximately US$75 billion by .[52] As they are such an important class of materials, research is constantly taking place and papers published.[53]
If you want to learn more, please visit our website Tianjin Ruifeng.
Polyurethanes, especially those made using aromatic isocyanates, contain chromophores that interact with light. This is of particular interest in the area of polyurethane coatings, where light stability is a critical factor and is the main reason that aliphatic isocyanates are used in making polyurethane coatings. When PU foam, which is made using aromatic isocyanates, is exposed to visible light, it discolors, turning from off-white to yellow to reddish brown. It has been generally accepted that apart from yellowing, visible light has little effect on foam properties.[54][55] This is especially the case if the yellowing happens on the outer portions of a large foam, as the deterioration of properties in the outer portion has little effect on the overall bulk properties of the foam itself.
It has been reported that exposure to visible light can affect the variability of some physical property test results.[56]
Higher-energy UV radiation promotes chemical reactions in foam, some of which are detrimental to the foam structure.[57]
Polyurethanes may degrade due to hydrolysis. This is a common problem with shoes left in a closet, and reacting with moisture in the air.[58]
Microbial degradation of polyurethane is believed to be due to the action of esterase, urethanase, hydrolase and protease enzymes.[59] The process is slow as most microbes have difficulty moving beyond the surface of the polymer. Susceptibility to fungi is higher due to their release of extracellular enzymes, which are better able to permeate the polymer matrix. Two species of the Ecuadorian fungus Pestalotiopsis are capable of biodegrading polyurethane in aerobic and anaerobic conditions such as found at the bottom of landfills.[60][61] Degradation of polyurethane items at museums has been reported.[62] Polyester-type polyurethanes are more easily biodegraded by fungus than polyether-type.[63]
Polyurethane is the most preferred industrial coating due to the versatility and long-lasting properties it offers under adverse conditions. The polyurethane is being prepared by first mixing up the raw materials such as polyol and isocyanate that are the main constituents during a chemical reaction, polymerization, and curing. Coatings based on different types, which include solvent-based, water-based, and high-solids, are available for application in industrial areas like automotive, construction, and marine. Such coatings provide the best abrasion resistance, chemical stability, and longevity. However, there are challenges like raw material costs and environmental concerns. Future trends are towards sustainable, eco-friendly formulations and better performance to meet the needs of the industry.
Polyurethane coatings have transformed industrial uses because of their excellent durability, flexibility, and chemical and abrasive resistance. Moving from the dust protection of automobiles to machinery applications. So, how is polyurethane made? And what makes it that highly sought-after industrial coating? Read on for the whole process-from raw materials to the final product.
Polyurethane is a versatile polymer that forms during the chemical reaction between polyols and isocyanates. This polymer coats a material or surface, yielding a hardy, rugged cover that withstands wear, moisture, and chemical attacks. Given its flexibility in application, industries such as construction, automotive, marine, and aerospace find numerous uses for this polymer.
Essential raw materials in polyurethane production are mainly :
Polyols: These are long-chain molecules bearing multiple hydroxyl groups. They form the base upon which the polyurethane is made. They also define the softness, hardness, and the overall performance of the final product. Polyester or polyether based, polyols come in different formulations, all having unique properties.
Isocyanates: It is also known as isocyanic acids, reactive to polyol groups, but combines to generate the polyurethane. Important categories include Methylene diphenyl diisocyanate, toluene diisocyanate; these help make the resultant product rigid/strength material with specific handling necessities due to risk exposure.
Catalysts and Additives: These govern the speed of the reaction and enhance the final product properties. Catalysts include amines and metal-based compounds that ensure effective curing, whereas additives are UV stabilizers, flame retardants, and antioxidants that ensure durability and resistance.
Solvents: Applied in certain products to make them less viscous and thereby ensuring smooth coating. They are effective in attaining uniform coating thickness and superior adhesion on surfaces. Still, the choice of the solvent should be considered in terms of the environment and the laws.
Pigments and Fillers: Provided for aesthetic color and better mechanical properties. The pigments will make the aesthetic color better, and the fillers will make the strength, abrasion resistance, and cost reduction in polyurethane formulations.
Read More: How Do Chemicals in Industrial Coatings Improve Corrosion Resistance in Harsh Environments?
Here are the step by step process of how is Polyurethane made:
Firstly, in the way of preparation of polyurethane, an absolute formulation is required. Polyols and isocyanates are mixed in precise ratios to achieve the desired properties and along with catalysts and additives. The formulation varies as per industrial floors or for application in the auto parts, or for a marine application.
When both the polyols and the isocyanates are mixed together, they would then undergo a polymerization reaction. As a consequence of the exothermic process, these molecules become longer and form polyurethane. Quality continuity is dependent on the precision of the reaction mechanism which reflects the energy that is emitted from the formation of the product.
This stage adds some pigments and fillers, thereby enhancing mechanical strength and making it look much more appealing, changing other modified properties like resistance to UV and flexibility, together with adhesion.
Solvents in solvent-based coatings are used for viscosity adjustment and application property modification. In this regard, today’s advancement tends to shift to water-based and 100% solid coatings with a decreased impact on the environment.
The applied polyurethane coating can be sprayed, brushed, or dipped onto the industrial surfaces. Application depends on the industry to which it will be applied and the finish expected from it.
This cured by chemical reactions (for two-component systems) or by evaporation of water in moisture-cure and by solvent evaporation in solvent-based systems. This will determine how hard, flexible, and strong the final product is.
Polyurethane Coatings are prepared in various forms, each serving a particular industry application:
Solvent-Based Polyurethane Coatings: Very good chemical and abrasion resistances, ideal for automotive, aerospace, etc. These can be used when high adhesion is required as well as a resistance to harsh chemicals, extreme temperatures, abrasion, and other factors, but they possess VOCs. They require suitable ventilation during their application.
Water-Based Coatings: Eco-friendly with minimal VOC emissions, widely used in furniture and flooring applications. It comes with great clarity, less odor, dries fast, and hence is recommended for interior application. Their durability is possibly a little less compared to that of solvent-based coatings, and thus at times may necessitate more layers.
100% Solids Polyurethane Coatings: Thin, high-performance coatings created with no solvents. For heavy industrial applications, such as bridges, pipelines, and concrete floors, these offer extraordinary impact resistance, water protection, and chemical corrosion protection. Since they contain no solvents, they do not pose a threat to workers and minimize environmental hazard.
Moisture Cure Coatings: Cure by reaction with atmospheric moisture. It is used for the coating of woods and protection to metals. Such coatings have good toughness, resistance to chemicals, and flexibility for long-time durability against wear and environmental effects. However, their storage should be done cautiously since exposure to moisture before application impacts their performance.
Polyurethane coatings have a number of benefits that make them ideal for industrial applications:
High Durability: Polyurethane-based coatings, being abrasion and impact-resistant, are expected to withstand harsh environmental conditions. It forms a tough, protective layer that hardens surfaces in such an environment, thereby increasing their lifecycle. One can include the manufacturing industry, automotive, and the construction industry, who make extensive use of coatings for higher durability and longer-lasting performance.
Chemical Resistance: It guards against exposure of the surface to oils, acids, and solvents. Thus, polyurethane are widely used in dangerous chemical processing units, laboratories, and oil refineries. Such a layer acts as a protection against corrosion, thereby avoiding any material degradation of the structure.
Flexibility: It does not crack and peel under mechanical stress. Unlike brittle coatings, the polyurethane coating remains flexible and is thus able to sustain expansion, contraction, and movement of the surface. This attribute is essential for applications such as bridge coatings, flooring, and aerospace components that experience structural shifting.
UV and Weather Resistance: Suitable for outdoor application. Polyurethane paint protects against fading, chalking, and deterioration from the side action of long sunlight exposure as well as extreme weathering conditions. This quality makes it highly recommended for exterior applications, which include marine vessels, buildings, and furniture that are laid outside.
Aesthetic appeal: Smoothen surfaces using glossy, or matte finishes; these coatings are designed to have all sorts of colours and textures available, thereby offering an enhanced look for industrial as well as commercial products. Also, since their gloss and colors are maintained through time, such products ensure that they remain perfectly professional-looking.
Fast Drying and Curing: Saves time in industrial processes. Rapid curing enables shorter production cycles, thus reducing waiting time and maximizing productivity in large-scale applications. Some formulations are even applied at low temperatures, making them flexible for different settings.
Also Read: Epoxy Resin VS Phenolic Resin
Despite its benefits, production of polyurethane has some issues:
Volatile Organic Compounds (VOC) Emissions: Solvent-based coatings are contributory to air pollution and stringent regulatory compliance. Most industries today are switching to the use of water-based and low-VOC variants to ensure environmental safety. But such alternatives often fail to match the performance of solvent-based coatings in high-performance applications.
High-quality raw materials such as polyols and isocyanates are pretty costly, bringing about high-cost production. High supply chain discontinuity, along with crude oil dependency and universal demand, result in price variances for materials. Manufacturers of this product thus have to focus on balancing high cost efficiency by optimizing the respective formulations or find sustainable sources.
Curing Time Differences: Various formulations have different curing times, thus misguiding the application schedules. While some of the types of polyurethane products can harden quickly, others need a longer-time curing process, which not only can be time-consuming but also can stop industrial projects. Besides temperature and humidity as the main influencing factors, the process control is also crucial to make sure the curing rates are stable and predictable.
Adhesion Issues: If the surfaces are not properly prepared, it leads to crack formation and decreases the shelf life of the coating. Even fine particles sticking to the surface such as, dust, oils, or humidity and they may not cause the adhesions between the coatings and the surface to remain strong on the material until over time. A thorough substrate of the potent cleanser should be followed by the prime and the application to ensure the durability of the project.
Polyurethane production at an industrial scale involves a precise chemical reaction between diisocyanates (such as MDI or TDI) and polyols. The process requires controlled conditions to ensure consistency, durability, and performance.
Manufacturers use continuous or batch processing techniques depending on the required volume and application. In continuous production, raw materials are fed into a reactor, where catalysts and additives regulate the polymerization process. Batch processing, on the other hand, is preferred for customized formulations.
For large-scale production, companies rely on high-efficiency mixing equipment, precise temperature control, and automation to optimize output and reduce waste. Additionally, sourcing high-quality raw materials is crucial for achieving desired flexibility, rigidity, or thermal resistance.
Elchemy, a chemical manufacturing and sourcing platform, helps industries procure high-purity diisocyanates, polyols, and additives, ensuring cost-effective and reliable polyurethane production. With streamlined logistics and supplier partnerships, Elchemy simplifies bulk chemical sourcing for manufacturers worldwide.
To make excellent choices in the protective coatings field, the knowledge of polyurethane production process is important. Polyurethane coatings provide the best durability, chemical resistance, as well as weather protection, making cooperation with the industries. demanded choice by them. No matter what the need is, mixed-formulations for automotive, marine, construction, and heavy industrial applications help to greatly improve the life of the surfaces.
Trusting in premier results of polyurethane would be the best decision since wear and tear would be reduced and the equipment would be less demanding to the operators. Good looks are only a small part of the benefit you get from quality products, thanks to the additional advantages like lower maintenance costs and the increased security of work in difficult areas.
For more Polyurethane Raw Materialsinformation, please contact us. We will provide professional answers.